17 research outputs found

    A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces

    Get PDF
    In this paper we present a high-order kernel method for numerically solving diffusion and reaction-diffusion partial differential equations (PDEs) on smooth, closed surfaces embedded in Rd\mathbb{R}^d. For two-dimensional surfaces embedded in R3\mathbb{R}^3, these types of problems have received growing interest in biology, chemistry, and computer graphics to model such things as diffusion of chemicals on biological cells or membranes, pattern formations in biology, nonlinear chemical oscillators in excitable media, and texture mappings. Our kernel method is based on radial basis functions (RBFs) and uses a semi-discrete approach (or the method-of-lines) in which the surface derivative operators that appear in the PDEs are approximated using collocation. The method only requires nodes at "scattered" locations on the surface and the corresponding normal vectors to the surface. Additionally, it does not rely on any surface-based metrics and avoids any intrinsic coordinate systems, and thus does not suffer from any coordinate distortions or singularities. We provide error estimates for the kernel-based approximate surface derivative operators and numerically study the accuracy and stability of the method. Applications to different non-linear systems of PDEs that arise in biology and chemistry are also presented

    A High-Order Radial Basis Function (RBF) Leray Projection Method for the Solution of the Incompressible Unsteady Stokes Equations

    Get PDF
    A new projection method based on radial basis functions (RBFs) is presented for discretizing the incompressible unsteady Stokes equations in irregular geometries. The novelty of the method comes from the application of a new technique for computing the Leray-Helmholtz projection of a vector field using generalized interpolation with divergence-free and curl-free RBFs. Unlike traditional projection methods, this new method enables matching both tangential and normal components of divergence-free vector fields on the domain boundary. This allows incompressibility of the velocity field to be enforced without any time-splitting or pressure boundary conditions. Spatial derivatives are approximated using collocation with global RBFs so that the method only requires samples of the field at (possibly scattered) nodes over the domain. Numerical results are presented demonstrating high-order convergence in both space (between 5th and 6th order) and time (up to 4th order) for some model problems in two dimensional irregular geometries.Comment: 34 pages, 8 figure

    A Radial Basis Function Method for Computing Helmholtz-Hodge Decompositions

    Get PDF
    A radial basis function (RBF) method based on matrix-valued kernels is presented and analyzed for computing two types of vector decompositions on bounded domains: one where the normal component of the divergence-free part of the field is specified on the boundary, and one where the tangential component of the curl-free part of the field specified. These two decompositions can then be combined to obtain a full Helmholtz-Hodge decomposition of the field, i.e. the sum of divergence-free, curl-free, and harmonic fields. All decompositions are computed from samples of the field at (possibly scattered) nodes over the domain, and all boundary conditions are imposed on the vector fields, not their potentials, distinguishing this technique from many current methods. Sobolev-type error estimates for the various decompositions are provided and demonstrated with numerical examples

    Refined error estimates for matrix-valued radial basis functions

    Get PDF
    Radial basis functions (RBFs) are probably best known for their applications to scattered data problems. Until the 1990s, RBF theory only involved functions that were scalar-valued. Matrix-valued RBFs were subsequently introduced by Narcowich and Ward in 1994, when they constructed divergence-free vector-valued functions that interpolate data at scattered points. In 2002, Lowitzsch gave the first error estimates for divergence-free interpolants. However, these estimates are only valid when the target function resides in the native space of the RBF. In this paper we develop Sobolev-type error estimates for cases where the target function is less smooth than functions in the native space. In the process of doing this, we give an alternate characterization of the native space, derive improved stability estimates for the interpolation matrix, and give divergence-free interpolation and approximation results for band-limited functions. Furthermore, we introduce a new class of matrix-valued RBFs that can be used to produce curl-free interpolants

    A Partition of Unity Method for Divergence-Free or Curl-Free Radial Basis Function Approximation

    Get PDF
    Divergence-free (div-free) and curl-free vector fields are pervasive in many areas of science and engineering, from fluid dynamics to electromagnetism. A common problem that arises in applications is that of constructing smooth approximants to these vector fields and/or their potentials based only on discrete samples. Additionally, it is often necessary that the vector approximants preserve the div-free or curl-free properties of the field to maintain certain physical constraints. Div/curl-free radial basis functions (RBFs) are a particularly good choice for this application as they are meshfree and analytically satisfy the div-free or curl-free property. However, this method can be computationally expensive due to its global nature. In this paper, we develop a technique for bypassing this issue that combines div/curl-free RBFs in a partition of unity framework, where one solves for local approximants over subsets of the global samples and then blends them together to form a div-free or curl-free global approximant. The method is applicable to div/curl-free vector fields in ℝ2 and tangential fields on two-dimensional surfaces, such as the sphere, and the curl-free method can be generalized to vector fields in ℝd. The method also produces an approximant for the scalar potential of the underlying sampled field. We present error estimates and demonstrate the effectiveness of the method on several test problems

    Sobolev-type approximation rates for divergence-free and curl-free RBF interpolants

    No full text

    Stability and error estimates for vector field interpolation and decomposition on the sphere with RBFs

    Get PDF
    A new numerical technique based on radial basis functions (RBFs) is presented for fitting a vector field tangent to the sphere, S 2, from samples of the field at “scattered ” locations on S 2. The method naturally provides a way to decompose the reconstructed field into its individual Helmholtz-Hodge components, i.e. into divergence-free and curl-free parts, which is useful in many applications from the atmospheric and oceanic sciences (e.g., in diagnosing the horizontal wind and ocean currents). Several approximation results for the method will be derived. In particular, Sobolev-type error estimates are obtained for both the interpolant and its decomposition. Optimal stability estimates for the associated interpolation matrices are also presented. Finally, numerical validation of the theoretical results is given for vector fields with similar characteristics to those of atmospheric wind fields.

    Implicit Surface Reconstruction with a Curl-Free Radial Basis Function Partition of Unity Method

    No full text
    Surface reconstruction from a set of scattered points, or a point cloud, has many applications ranging from computer graphics to remote sensing. We present a new method for this task that produces an implicit surface (zero-level set) approximation for an oriented point cloud using only information about (approximate) normals to the surface. The technique exploits the fundamental result from vector calculus that the normals to an implicit surface are curl-free. By using curl-free radial basis function (RBF) interpolation of the normals, we can extract a potential for the vector field whose zero-level surface approximates the point cloud. We use curl-free RBFs based on polyharmonic splines for this task, since they are free of any shape or support parameters. To make this technique efficient and able to better represent local sharp features, we combine it with a partition of unity method. The result is the curl-free partition of unity (CFPU) method. We show how CFPU can be adapted to enforce exact interpolation of a point cloud and can be regularized to handle noise in both the normals and the point positions. Numerical results are presented that demonstrate how the method converges for a known surface as the sampling density increases, how regularization handles noisy data, and how the method performs on various problems found in the literature
    corecore